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Abstract—A critical review of the principal strategies of the EEG description as a piecewise stationary process is given. 
Achievements, problems, and prospects of parametric and nonparametric strategies of the EEG segment structure assessment are 
discussed on the basis of the literature and the author's data. Among them, attention is directed to the adequacy of the EEG 
segmentation based on the autoregression models or on the previous fragmentation of EEG realization in pieces of fixed 
duration, to the relative value of EEG segmentation on different time scales, and to the spatiotemporal integration of local 
segmental EEG descriptions. A possibility of the hierarchical segmental EEG descriptions on different time scales and frequency 
ranges is discussed. It is concluded that the set of modern strategies of the segmental EEG descriptions is, on the whole, 
sufficient for comprehensive exploration of the EEG process in terms of its piecewise stationary organization. 
 

A quarter of a century after Hans Berger had demonstrated the first recordings of 
electrical activity of the human brain, the rigorous qualitative estimation of the EEG signal 
raised the legitimate question of its statistical nature. Norbert Wiener proposed to consider the 
EEG as a stochastic signal by analogy with the output characteristics of any complex system [1]. 
It was thought that the principal regularities of the dynamics of the total EEG signal could be 
studied on the basis of its probability-statistical estimations irrespective of the real biophysical 
origin of cortical electrical processes [2]. Thus, a considerable body of work appeared 
concerning the stochastic properties of the EEG signal (for a review see [3]). The main 
conclusion is that the EEG may actually be approximated by the basic normal, ergodic, 
Gaussian, etc., stochastic criteria only at rather short realizations, usually not longer than 10-20 
s. This is explained by the finding that the EEG turned out to be an extremely nonstationary 
process. The variability of power of the main spectral EEG components, e.g., for successive 
short-term (5-10 s) segments, reached 50-100% [4]. 

Obviously, the routine statistical characteristics (including the spectral-correlational ones) 
are applicable to the EEG signal only after its prior segmentation into relatively stationary 
intervals. This, in turn, necessitated development the detection techniques of the so-called quasi-
stationary segments of the EEG signal. The first positive findings in this line not only pointed 
the way for more correct estimation of the EEG signal statistical properties but, more 
importantly, approached the principally novel understanding of the EEG organization as a 
piecewise stationary process [5]. 
The conceptual problems of the structural approach to the EEG analysis were reviewed by us 
earlier [3]. In the present paper, we discuss the achievements, problems, and prospects of EEG 
signal segmentation in itself. 
 
1. EEG AS A NONSTATIONARY STOCHASTIC PROCESS 
 
The EEG nonstationarity is usually expressed as the short-term paroxysms (spikes, spike-waves, 
and K-complexes) or successively alternating longer shifts in the EEG parameters [6]. As a rule, 
phasic paroxysmal EEG phenomena are visually identified by researchers without question, 
while the detection of tonically stabilized EEG segments demands some theoretical justification. 
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In the limiting case, when the number of samplings and the number of realizations of each 
sampling tend to infinity, the procedure of signal segmentation into stationary fragments should 
produce an unambiguous solution. It is sufficient to compare the distributions and variances in 
an ensemble of each successive sampling. The presence of significant difference between the 
statistics at a certain comparison step would be indicative of the break of stationarity in a given 
point in the narrow sense of this term [7]. Successive comparisons may produce the maximally 
precise estimation of sizes and time positions of quasi-stationary fragments in the tested EEG 
recording. 
Taking into account that, universally, only one realization of a random process is practically 
available, one can estimate its statistics only at the set of successive samplings on the assumption 
admissible for the EEG signal that it is ergodic [8, 9]. In this case, the stationarity of the process 
may be taken only in a wide sense of this term [7]. However, the estimation of the EEG 
statistical properties is possible only on a finite time interval. This interval may be shortened by 
increasing the number of samplings per unit of time due to higher digitalization frequency of a 
continuous process only to a certain limit, i.e., up to the moment when the neighboring counts 
become strongly correlated. It is this condition that limits the extrapolation of the theoretical 
definition of stationarity to the real processes in a wide sense. The notion of quasi-stationarity, 
which should be solely used in description of real physical processes, was introduced in order to 
stress the understanding of the confined assessments of stationarity. In terms of quasi-
stationarity, the results of the EEG signal segmentation depend on some merely experimental 
conditions: the duration of the assessed EEG recording, size of the minimally acceptable EEG 
fragment tested for station arity, as well as on the choice of the EEG estimation parameters and 
the threshold criteria. It is apparent that, for the finite small-sized samples, all these conditions 
can be defined empirically and depend on subjective choice of researchers. 

For the routine EEG traditionally recorded in the frequency range of 1-30 Hz the lower and 
upper limits of the quantization rate are 60 and 200 Hz, respectively. Accordingly, at the 
sampling rate of 100 counts per sec ond, which is necessary for a reasonable statistical esti 
mation of the EEG signal, the discreteness of the quasi-stationary description of a single-channel 
EEG cannot be more than 1-2 s. It seems appropriate that, in the pioneer work of McEwen [8] 
devoted to the analysis of EEG stationarity, practically all the EEG fragments of 2-4 s in 
duration turned to be stationary. In further EEG fragmentation, the statistical estimation of such 
short segments would clearly fail and the question of their stationarity would be senseless. 

2. FIXED-INTERVAL SEGMENTATION OF THE EEG 

 
In principle, if the duration of the minimal stationary interval is not less than 2 s [8], the 

procedure of the EEG signal segmentation into quasi-stationary fragments would consist of four 
steps. At the first stage, the EEG recording is predivided into equal elementary segments 2 s in 
size. Then, each segment is provided with a statistical description consisting of a certain set of 
characteristics, e.g., spectral estimations. At the third stage, the elementary EEG segments are 
classified and named according to their characteristics by one of the multivariate statistical 
procedures. Finally, the bound arises between the like segments are erased. Thus, the EEG 
recording transforms into a series of segments within which the EEG parameters remain 
relatively constant. Each such quasi-stationary segment would be distinguished by its specific 
duration and typological characteristics. If the number of segment classes in the real EEG is not 
very high, the idea of piecewise station ary organization of the EEG will offer clear-cut 
advantages over the alternative primary concept of the EEG as a continuous process. 
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This exact approach, with the previously fixed-interval EEG segmentation, was used in the 
first works concerned with EEG segmentation [10-13]. The number of typical EEG segments 
really turned out to be restricted, not more than 15-35 for different EEGs [11- 
13], and the duration of the majority of segments did not exceed 4 s, which clearly testified to 
the piecewise EEG organization. However, the fixed-interval EEG segmentation had a material 
disadvantage in that a part of the segments should necessary fall on joints between the stationary 
EEG segments. This led to the appearance of the whole cluster of EEG fragments, which 
contained transition processes and, hence, were not strictly stationary segments. Moreover, 
interfaces between stationary segments were defined by this means rather roughly within the 
accuracy of no less than the duration of the fixed interval. 

To avoid such errors in search for quasi-stationary EEG fragments, it was necessary to 
develop such a segmentation procedure which would include the successive exhaustion of 
possible arrangements of interseg-mental boundaries with the choice of the optimal variant. Just 
this technique, called adaptive segmentation, is applied in one or another form in the majority of 
modern methods of the automatic detection of quasi-stationary segments in the EEG [10]. Let us 
consider the main approaches to the adaptive segmentation of the EEG signal. 

3. PARAMETRIC SEGMENTATION OF THE EEG 
 
Generally, the procedure of adaptive segmentation would be based on the estimation of the 

extent of simi larity of the initial EEG fixed interval with the EEG fragment of the same duration 
viewed through the time window running along the EEG recording. Apparently, the monitored 
similarity will sharply decrease when this window runs over the boundary. This is a formal 
indication of the transition to the following segment. 

The techniques which predict the next EEG counts by the results of estimation of a series of 
prior counts appear to be most adequate. The moment of discor dance between predicted and real 
current EEG counts would be a very sufficient indication of a local nonsta-tionarity. 

3.1. Parametric EEG Segmentation Based on Autoregressive Models 
 
The methods of predicting a time series are based on an assumption that their stochastic 

character is largely confined by certain dynamic regularities. 
In this case, if it is possible to find the mathematical models fitting these regularities, a 

number of further successive EEG counts will be really predicted with a certain accuracy. 
Beyond the stationary segment with matched model parameters, the prediction error will sharply 
increase, thus signaling the termination of the foregoing segment and beginning of the next one. 
For the initial portion of this next segment, new model parameters may be calculated, and then 
search for the boundary with the next segment may be continued. Thus, the parameters of the 
EEG mathematical model become the key element in search for segment-to-segment transitions. 
Therefore, a correct choice of the EEG model is very important. 

Initially, in the framework of this idea, the coefficients of Kalman filter were used for the 
model EEG description [14]. The remarkable feature of this specific procedure was that behavior 
of each of ten filtering coefficients was taken into account to identify the moment of discordance 
between the real EEG and the model, rather than a certain weighted mean index. A sharp change 
in only one of these coefficients gave sufficient reason to make a decision about the 
intersegmental boundary [14] which substantially increased the sensitivity of the method to 
detect segment-to-segment transitions. It was necessary to introduce a measure of synchronous 
changes in the filtering coefficients to obtain the principally novel description of the EEG signal 
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in terms of its inherent frequency consistency. How ever, 20 years or more had to pass before the 
experi mental realization of this aspect of the structural EEG organization [3, 15]. 
The most advanced method of EEG simulation is linear extrapolation, developed by N. Wiener 
as early as 1942 as a supplement for autoregression analysis (see [5]) and put forward for the 
first time for EEG testing in the late 1960s (for a review see [16]). In the frame work of the 
autoregression model, the next EEG count can be calculated with a certain error as a sum of 
several previous counts taken with definite coefficients. The principle procedures of the EEG 
adaptive segmentation based on the autoregressive models of a rather low order were primarily 
developed by Bodenstein and Praetorius [5] and then in various modifications were successfully 
used by other authors [10, 17-20]. 

The set of the type segments revealed in the quoted papers was even more restricted than after 
the fixed-interval segmentation. According to these authors, the duration of a quasi-stationary 
segment varied, mainly, from 1-2 to 20 s, and the estimated number of segment types was from 6 
to 50 [21, 22]. Application of multiple regression analysis to the EEG with a calculation of the 
contribution of each of the several model parameters made the segmentation procedure more 
correct [23]. Using this technique, the authors could detect the EEG segments associated with 
certain cognitive operations. It was also shown in this paper that the duration of the majority of 
quasi-stationary EEG segments was 2-10 s [23]. Despite the careful algorithmic working up, the 
methods of EEG segmentation based on the regression analysis ultimately operate with the 
empirically chosen threshold criteria. This condition substantially restricts the abilities of 
scientists not only in comparison of interindividual data but in segmentation of EEGs from 
different derivations in the same subject. 

In addition to the inevitable empirical predetermination, the threshold criterion for EEG 
segmentation in the techniques under consideration has a more serious disadvantage, i.e., the 
absence of adaptability to changing parameters of the EEG process. In this connection, 
for the mathematical EEG description, it would be possible to apply the autoregressive model 
with the time-varying parameters tested in speech recognition [24]. Such attempts have also been 
made relative to EEG [25, 26]. However, the absence of a priori determined low of variations of 
parameters with time demanded a construction of an additional model, which in the general case 
should result in accumulation of greater errors. 

3.2. Time Scaling in EEG Segmentation 
 
The listed methods of EEG adaptive segmentation on the basis of autoregressive modeling used 
the same technique of running comparison of the EEG parameters on the referent and tested 
segments, which made it possible to view the EEG structure only through a fixed time window. 
This determined a single mode of time scaling of EEG heterogeneities and, thus, prevented the 
total insight into the EEG structure, because only relative sizes of neighbouring peaks can be 
seen in the view-finder of a camera, while the character of the mountain chain relief, as a whole, 
remains beyond the visual field. However, it is quite possible that the larger EEG 
transformations superpose on the local segmentation of the EEG process and such 
transformations make up a segment description of a signal on a larger time scale. 
The regressive EEG modeling was also used in the work [27]. The authors studied the EEG a 
component on the assumption that the dynamics of a activity on a quasi-stationary segment can 
be approximated by a simple linear time regression of y = at + b type, where y is the a rhythm 
power counted at the moment t from the beginning of the tested EEG interval. In this case, the 
problem of finding a boundary between two quasi-stationary segments was reduced to a 
developed statistical procedure of comparison between coefficients a and b for two linear 
regressions at both sides of the pre summed intersegmental boundary. The method was sufficient 
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enough for EEG determination of the moment of the beginning of action of the neurotropic drugs 
and was developed just for this purpose [27]. 
However, in our opinion, the point of this study was that the authors approached the solution of 
the problem of the EEG entire structural description. Actually, the regressive models yere 
constructed to the left and to the right of the presumable interface between EEG segments. Since 
the position of this interface is not known in advance, two regressions were compared repeatedly 
for the left and right halves of the EEG recording relative to each successive EEG count. The 
moment of the maximal statistically significant difference between two regressions indicated the 
interface between the largest EEG segments from the viewpoint of macrode-scription of this 
signal. If a similar procedure was then carried out for each of the two detected segments sepa-
rately, the segments corresponding to more detailed EEG analysis would be obtained. Further 
repetitions of such a procedure should lead to the EEG segment microdescription. Thus, there 
were prospects for presentation of the structural EEG organization as a hierarchy of segmental 
descriptions on different time scales. The authors themselves had not seen these prospects, and 
therefore their method turned out to be useful for revealing only one most pronounced 
intersegmental boundary in the whole EEG recording [27]. 

The last limitation was eliminated, to a certain extent, in the work [28] where the tested EEG 
counts were taken into consideration in searching for intersegmental boundaries. On the basis of 
Bayesovian approach, the authors calculated the most probable arrangement of the moments of 
multiple interfaces between segments over the whole length of the EEG recording. Combining 
this technique with autoregressive modeling, the authors gained a rather accurate EEG 
fragmentation into quasi-stationary segments [28]. By changing one of the segmentation 
algorithm parameters, it was possible to restrict the number of calculated segment-to segment 
interfaces in the EEG recording, which properly enabled segmentation to be carried out with 
more or less time resolution testing the hierarchy of subsegment relations on different time 
scales. However, the authors did not appraise this aspect of the EEG segmentation technique. 
Moreover, the complexity of calculations mentioned by the authors themselves makes this 
approach acceptable only for analysis of very short (not longer than several seconds) EEG 
fragments [28]. 
On the whole, the discussed set of methods of the parametric adaptive EEG segmentation, in 
principle, makes it possible to adequately describe the piecewise stationary structure of the EEG 
signal. However, all these methods, primarily directed to a search for quasi-stationary fragments, 
by definition, may be applied only for stationary processes. Actually, the so-called parametric 
methods are based on the previous construc tion of a mathematical model (e.g., the 
autoregressive one) in the referent window on the initial EEG segment. Apparently, sufficiently 
accurate simulation of the pro cess can be obtained only on the stationary interval. The longer 
the interval, the finer characteristics of the process can be reflected in the model. However, the 
longer the analyzed fragment of the real EEG, the more probable the incidence of heterogeneities 
within this fragment [8 et al.]. If the model is constructed on a very short segment, it will be very 
rough and it cannot be expected that segmentation on the basis of the parameters of this model 
would be of high quality. 

Thus, the parametric methods of search for quasi-stationary EEG segments carry a rather 
strong contra diction: segmentation into stationary fragments is impossible without construction 
of an adequate mathematical model, however, such a model cannot be con structed without 
previous segmentation. 
Moreover, since the summary EEG is a highly composite and substantially nonlinear process 
[29, 30], the development of a rigorous mathematical model, which 
would adequately reflect the EEG intrinsic nature, is hardly probable [16]. This is why the 
parameters of even the well-fitted EEG models [16, 31], not reflecting the essence of the 
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processes underlying the EEG [2, 19], make the EEG signal segmentation procedure 
substantially rough in any case. 
Consequently, the development of nonparametric EEG segmentation methods is undoubtedly of 
interest. Application of such methods do not require previous testing for stationarity, since they 
are not associated with construction of mathematical models of the process under study but are 
based on its real statistical characteristics. 

4. NONPARAMETRIC APPROACHES TO DESCRIPTION OF PIECEWISE STATIONARY 
EEG STRUCTURE 
 
Study [32] is an example of one of the first nonparametric approaches to EEG segmentation. The 
authors also used the technique of the running window, but for comparison of the referent and 
tested EEG fragments, they applied specific estimations of the autocorrelation functions rather 
than the parameters of the autoregressive model. The integral index of the relative amplitude and 
shape discrepancy between the autocorrelation functions of the referent and tested EEG 
fragments served as a nonparametric test of difference between the fragments [32]. 
The later modification of these technique, which used the calculation of the normalized sum of 
the squares of differences of five autocorrelation coefficients as a measure for spectral 
dissimilarity between the referent and tested EEG fragments, successfully passed the clinical 
evaluation test [22]. 
Indices of spectral expansion also belong to the non parametric estimations of time series. The 
possibility of application of the Fast Fourier Transform (FFT) as a nonparametric procedure of 
segmentation with the previously fixed-interval EEG fragmentation was discussed above. The 
main disadvantage of this technique, i.e., the lack of adaptability to intersegmental bound aries, 
was also mentioned. It would be natural to apply the FFT in a running time window with 
subsequent comparison of the obtained spectral estimations with similar characteristics of the 
referent window, like in the adaptive segmentation procedure by means of autoregressive 
modeling. However, the 100% variance of the single spectral estimations [33] in the absence of 
adequate correction algorithms for these estimations usually prevents such attempts. 
Nevertheless, the only work in this direction [34] did demonstrate the prospects for such an 
approach. In this study, the author used the maximal ratio between the narrow-band spectral 
estimations as a measure of EEG spectral difference in two jointly running windows [34], which 
made the method sufficiently sensitive to the EEG transition processes. However, the lack of the 
analytical justification of the threshold conditions, characteristic also of the other techniques of 
adaptive segmentation, still remained a problem for detection of intersegmental boundaries. In 
study [35], the assessment of inhomogeneity of spectral estimations of two EEG segments was 
carried out on the basis of the specially developed test with distribution parameters determined 
from statistic modeling. This allowed the author to justify the choice of the thresholds for 
detection of spectral differences between the tested EEG segments. However, this work was not 
developed in the direction of EEG segmentation. 
Despite the first successful attempts at the nonparametric approach to EEG segmentation, its 
further advance was restricted by the apparent condition that, in each specific case, a statistical 
EEG characteristic most efficient for the EEG segment structure determination (expected value, 
variance, other statistical moments etc.) was unknown beforehand. Moreover, the development 
of a specific technique of quasi-stationary segmentation was necessary for each of these 
statistics; 
therefore, the task of nonparametric EEG segmentation would consist in exhaustion of a rather 
large number of possible solutions. 
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The original technology of the nonparametric EEG segmentation was developed on the basis 
of the theory of the so-called analysis of sharp changes or heterogeneities in time series with a 
clear-cut piecewise stationary structure [36]. Heterogeneities determined in such a way are, in 
fact, the markers of the boundaries between quasi-stationary fragments. The theoretical 
development of this approach showed that the problem of detection of changes in any probability 
characteristic of a given stochastic process may be reduced to the same algorithm of detection of 
the expectation changes applied to different modifications of the initial time series. Each 
modification or diagnostic sequence can emphasize certain statistical features of the initial 
process. For example, the correlation transformation of the initial time series will display 
dynamic inconstancy of this process variance. 

A special statistical procedure for heterogeneity detection was developed during adaptation of 
this methodology to the problem of EEG segmentation on the basis of the generalized variant of 
Kholmogorov-Smimov statistics [37-39]. In different forms, these statistics had been already 
applied for EEG estimation [8,40]. Using these tests in the EEG segmentation technique, with 
regard for their probability distributions obtained in a numerical experiment in the EEG-like 
curves made it possible for the first time to not only detect the intersegmental boundaries but 
estimate the confidence intervals of their positions within the tested EEG fragment [37-39]. 
During adaptation of techniques of heterogeneity detection for EEG segmentation, it was shown 
that it is expedient to use the normalized EEG autocorrelation function as a diagnostic sequence 
[38,39]. 
The specific algorithm of search for EEG heteroge neities was also intended for estimation of the 
whole hierarchy of the EEG segment descriptions on the different time scales. First, the window-
free comparison system of EEG estimations was taken, which made it possible to account for the 
whole recording in search for heterogeneities: expectation estimations of the sig nal or its 
diagnostic sequence were compared between two portions of the EEG recording to the left and to 
the right of the dividing point mnning along the curve, as was done in the study [27]. Second, for 
more accurate calculation of the threshold criterion, heterogeneity fix ation was carried out 
stepwise: the most powerful het erogeneity, which marked the boundary between the two largest 
segments, was detected first. Afterwards, the procedure was repeated, however, only for more 
homogeneous parts of the recording on both sides of the first heterogeneity. More homogeneous 
segments were formed on the sides of heterogeneities of the second level, which, in turn, were 
subjected to point-to-point scanning and so on, up to the moment when the number of counts of 
the current EEG segment reached the threshold of statistically stable expectancy estimation. This 
algorithm of nonparametric EEG segmentation is described in more detail in special papers [38, 
39,41]. 
Since in any technique of search for the moments of phasic EEG changes its results can be 
obtained in probability estimations, the substantial advantage of the novel approach [36, 38, 39] 
is a possibility to explicitly specify the probability of a false alarm (detection of the absent 
signal) and false tranquility (omission of the present signal) in detecting the segment boundaries. 
In addition to the possibility of flexible optimization of the task of detection of segment 
boundaries from the exper imenter's viewpoint, this allows him to tune the proce dure for the 
operation on different time scales. For instance, increasing the threshold level of false alarms 
makes it possible to tune for detection of the most pro nounced segment-to-segment transitions 
and estimate only the macroscopic EEG segmental structure. Decreasing the threshold of "false 
alarms" leads to a more detailed microscopic pattern of the EEG segmen tal organization. 
Thus, a scientist has the possibility of repeated scanning of the EEG segment signal under 
different thresh old conditions, which finally allows him to reconstruct the whole hierarchy of 
the EEG segmental descriptions on different time scales. Application of the novel technique of 
nonparametric EEG segmentation in the practice of neurophysiological investigation 

 7



demonstrated its sufficiently high sensitivity for estimating the dynamics of the EEG structural 
changes associated with cognitive processes [41-43]. With the help of this technique, it was 
shown that spontaneous EEG consists of quasi-stationary segments, the duration of the majority 
of which is less than 5-6 s [43, 44], but the specific proportions of stationary EEG segments of 
different duration strongly vary between different cortical areas [42]. The definite difference in 
the number of heteroge neities per unit of time was also demonstrated by this technique for 
different sleep stages [44]. 

5. PROBLEMS OF MEANINGFUL INTERPRETATION OF EEG SEGMENTAL 
DESCRIPTIONS 
 
The above piecewise stationary structure of the EEG signal demonstrated by many authors 
turned out to be dependent on the recording area and was modified at changes in the brain 
functional state. In total, these data testify to indubitable functional significance of the segmental 
EEG architectonics. In our recent paper [3], we discussed the possible ontological grounds of 
such structural organization of the cortical bioelectrical field. We note here that, even before the 
pioneer works on segmentation, the idea about the piecewise organization of the EEG existed, 
and some researchers even thought that the EEG signal consisted of a limited number of type 
segments, i.e., a certain ABC of the EEG code [45]. This idea turned to be so attractive that after 
the appearance of the first evidence concerning the real EEG structure, a number of authoritative 
scientists came to the conclusion that a syntactic metaphor was the most adequate for the 
segmental description of the EEG activity [2, 11, 28, 46]. Even some attempts were made to 
interpret the segment code of the linear EEG by the methods of estimation of matrices of 
transition probabilities usually used for studying the regularities of Markov's processes [5, 20, 
47]. For instance, it was possible to demonstrate for the sets of three segment types that the 
probabilities of mutual alternation of these segments during the preseizure period substantially 
differ from the normal state, although such differ ence is practically indiscernible for traditional 
methods of EEG analysis [47]. 
The analogous results suggest that the quasi-station ary segments reflect the definite operational 
acts of ner vous activity. However, the use of segmentation proce dures to the common EEG not 
always can reveal this correlation due to the composite polyphonic character of the EEG signal. 
In particular, each frequency EEG component has its own segmental structure [15], which seems 
to be indicative of the discrete operation of dif ferent morphofunctional brain systems. In this 
case, it is possible to gain the highest sensitivity of the EEG segmentation techniques to 
functional changes only by operating with the individual EEG rhythms, e.g., with a activity [43]. 
The segment flows for each of the EEG frequency components are more or less correlated, 
depending on the character of the informational brain activity [15], which emphasizes once more 
the functional significance of the segmental EEG descriptions and their association with the 
integral mechanisms of brain activity. 
The polycorrelational character of the morphofunctional organization of the brain neuronal 
networks dis covers one more, the spatial, aspect of correlation 
between EEG segmental processes. It was reasonable to suggest that segment sequences in 
different derivations should, to a certain extent, synchronized, forming the stable topological 
combinations of local segmental EEG descriptions in total [48]. This suggestion was fully 
justified: the segment-to-segment interfaces in EEG recordings from different derivations turned 
really to be strongly correlated, which suggested the existence of a specific type of cooperative 
activity of cortical for mations i.e., operational synchronism [3, 41-43]. Meanwhile, it had 
already been known long before these studies that the maps of momentary distribution of cortical 
biopotentials were piecewise stationary themselves [49]. Supposedly, it is just the spatiotemporal 
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coordination between local segmental descriptions, or operational synchronization of the brain 
structures [41], that forms grounds for the dynamic stabilization of the cortical biopotential field 
demonstrated by Lehmann [50, 51, et al.]. 

The interchannel correlation of segmental descriptions, in particular, synchronization of 
segment-to-segment interfaces, can also be an additional criterion for the adequacy of the 
applied technique of EEG segmentation. From this viewpoint, it is justified to use even the fixed-
interval technique for EEG segmentation with calculation of single spectral estimations of the 
elementary EEG segments for their subsequent classification [52]. 

Thus, the whole set of available data suggests that the main operational elements of 
behavioral and mental activity are originated in the periods of short-term metastable states of the 
whole brain and its individual subsystems, when the numbers of degrees of freedom of the 
neuronal networks are maximally decreased [3]. This is why segmental EEG descriptions give 
certain unique possibility to gain a penetrating insight into the operational dynamics of the 
nervous activity and to register trajectories of the proper "atoms of thought" [51]. 

CONCLUSION 
The logic of phenomenological description of the EEG signal, on the one hand, and the 

necessity of its correct statistical estimation, on the other, led researches to the completely novel 
understanding of the structural EEG organization as a piecewise stationary signal. The potential 
astronomic multivariativity of the neuronal networks appeared to be far from continuous in time 
but confined by the dynamics of the short-term local and global metastable brain states. It is 
possible that just in these short periods of stabilization of activity of the neuronal networks, 
when the main part of insignificant dynamic parameters are fixed, brain formations interact with 
each other most precisely on the conditions for the formation of final decisions of functional 
systems. 

Hence, further progress in the meaningful interpretation of EEG phenomena may be 
apparently associated with the structural analytical approach to studying EEG as a piecewise 
stationary process. In any case, at present, a set of segmental EEG description is avail able, 
which is quite sufficient for revealing its piece-wise structure, in addition to traditional 
characteristics of this process. 

ACKNOWLEDGMENTS 
We are grateful to our research group colleagues Candidates of Biology A.G. Kochetova and 

S.L. Shish-kin, postgraduate students Al.A. Fingel'kurts and An.A. Fingel'kurts, programmers 
V.A. Ermolaev and R. Ivashko, and Candidate of Physics and Mathematics B.E. Brodskii for 
their help in experimental procedures and complicated data analysis. We are especially grate ful 
to Doctor of Physics and Mathematics B.S. Dar-khovskii and foreign colleagues Professors P. 
Nunez, B. Jansen, D. Lemann, and B. Thatcher, the working discussions with whom have 
determined our principal theoretical positions. 

The study was supported in part by the Russian Foundation for Basic Research, project no. 
96-04- 
49144. 

REFERENCES 
1. Wiener, N. Translated under the title Novye glavy kiber-netiki. Upravlenie i svyaz'v zhivotnom 

i mashine, Mos cow: Sovetskoe Radio, 1963. 
2. Lopes da Silva, F.H., Analysis of EEG Ongoing Activity: 

 9



Rhythms and Nonstationarities, Recent Advances in EEG and EMG Data Processing, 
Yamaguchi, N. and Fujisawa, K., Eds., Amsterdam: Elsevier, 1981, p. 95. 
3. Kaplan, A.Ya., Nonstationary EEG: Methodological and Experimental Analysis, Usp. Fiziol. 

Nauk, 1998, vol. 29, no.3,p.32. 
4. Oken, B.S. and Chiappa, K.H., Short-Term Variability in EEG Frequency Analysis, 

Electrophysiol. Clin. Neuro-physiol., 1988, vol. 69, p. 191. 
5. Bodenstein, G. and Praetorius, H.M., Feature Extraction from the Electroencephalogram by 

Adaptive Segmenta tion, Proc. IEEE, 1977, vol. 65, p. 642. 
6. Lopes da Silva, F.H., Analysis of EEG Non-Stationari-ties, in Contemporary Clinical 

Neurophysiology (Suppl. no. 34 to EEG and Clinical Neurophysiology), Cobb, W.A. and Van 
Dujn, H., Eds., Amsterdam: 

Elsevier, 1978, p. 165. 
7. Trush, V.D. and Korinevsky, A.V, EVM v neirofiziolo-gicheskikh issledovaniyakh (Computer 

in Neurophysio-logical Investigations), Moscow: Nauka, 1978. 
8. McEwen, J.A. and Anderson, G.B., Modeling the Sta-tionarity and Gaussianity of 

Spontaneous Electroen-cephalographic Activity, IEEG Transactions on Biomed. Engineering, 
1975, vol. BME-22, no. 5, p. 361. 

9. Ferber, G., Treatment of Some Nonstationarities in the EEG, Neuropsychobiology, 1987, vol. 
17, p. 100. 

10. Barlow, J.S., Methods of Analysis of Nonstationary EEGs, with Emphasis on Segmentation 
Techniques: a Comparative Review, J. Clin. Neurophysiol., 1985, vol. 2, p. 267. 

11. Giese, D.A., Bourne, J.R., and Ward, J.W., Syntactic Analysis of the Electroencephalogram, 
IEEE Trans. Syst. Man Cybern., 1979, vol. SMC-9, p. 429. 
12. Jansen, B.H., Hasman, A., Lenten R., et al., A Study of Inter and Intra Individual Variability 
of the EEG of 16 Normal Subjects by Means of Segmentation, in Proc. of the 2nd Europ. Congr. 
of EEG and Clin. Neurophys iol., Lechner, H. andAranibar, A., Eds., 1979, p. 617. 
13. Jansen, B.H., Hasman, A., Lenten R., Piecewise EEG Analysis: An Objective Evaluation, 
Internal. J. Bio.-Med. Comput., 1981, vol. 12, p. 17. 
14. Duquesnoy, A., Segmentation of EEGs by Means of Kal-man Filtering, in Progress Report 
5, Utrecht, Nether lands: Institute of Medical Physics, 1976, p. 87. 
15. Kaplan, A.Ya., Fingel'kurts, An.A., Fingel'kurts, Al.A., et al.. Correlation between Phasic 
Changes in the Main Frequency Components of the EEG Signal, Zh. Vyssh. Nervn. Deyat. im. 
I.P. Pavlova, 1998, vol. 48, no. 5, p. 17. 
16. Kaipio, J.P. and Karjalainen, PA., Simulation of Nonstationary EEG, Biol. Cybernetics, 
1997, vol. 76, p. 349. 
17. Bodunov, M.V, Individual Typological Features of the EEG Structure, Zh. Vyssh. Nervn. 
Deyat. im. I.P. Pav lova, 1985, vol. 35, p. 1045. 
18. Aufrichtig, R., Pedersen, S.B., and Jennum, P., Adaptive Segmentation of EEG Signals, in 
13th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Soci ety: Processing of 
Biological Signals, Negel, J.H. and Smith, W.M., Eds., 1991, vol. 13 (1), p. 0453. 
19. Jansen, B.H., Quantitative Analysis of the Electroen-cephalograms: Is There Chaos in the 
Future, Int. J. Biomed. Comput., 1991, vol. 27, p. 95. 
20. Sanderson, A.C., Segen, J., and Richey, E., Hierarchial Modeling of EEG Signals, IEEE 
Trans. Pattern Anal. Mach. Intel., 1980, vol. 2, p. 405. 
21. Barlow, J.S. and Creutzfeld, O.D., Automatic Adaptive Segmentation of Clinical EEGs, 
Electroencephalogr. Clin. Neurophysiol., 1981, vol. 51, p. 512. 
22. Creutzfeldt, O.D., Bodenstein, G., and Barlow, J.S., Computerized EEG Pattern 
Classification by Adaptive Segmentation and Probability Density Function Classifi cation. 
Clinical Evaluation, Electroencephalogr. Clin. Neurophysiol., 1985, vol. 60, p. 373. 

 10



23. Inouye, T, Toi, S., and Matsumoto, Y, A New Segmen tation Method of 
Electroencephalograms by Use of Akaike's Information Criterion, Brain Res. Cogn. Brain Res., 
1995, vol. 3, p. 33. 
24. Hall, M., Oppenheim, A., and Willsky, A., Time Varying Parametric Modelling of Speech, 
Signal Process., 1983, vol. 2, p. 267. 
25. Amir, N. and Gath, I., Segmentation of EEG during Sleep Using Time-Varying 
Autoregressive Modelling, Biol. Cybern., 1989, vol. 61, p. 447. 
26. Gath, I., Feuerstein, C., and Geva, A., A Model for Adap tive Description of Sleep Patterns, 
IEEE Transaction of Biomedical Engineering, 1992, vol. 17, p. 2. 
27. Deistler, M., Prohaska, 0., Reschenhofer, E., et al.. Pro cedure for Identification of Different 
Stages of EEG Background Activity and Its Application to the Detection of Drug Effects, 
Electroencephalogr. Clin. Neurophys iol., 1986, vol. 64, p. 294. 
28. Biscay, R., Lavielle, M., Gonzalez, A., et al., Maximum A Posteriori Estimation of Change 
Points in the EEG, Int. J. Biomed. Computing, 1995, vol. 38, p. 189. 
29. Steriade, M., Gloor, P., Llinas, R.R., et al.. Basic Mech anisms of Cerebral Rhythmic 
Activities, Electroenceph alogr. Clin. Neurophysiol., 1990, vol. 76, p. 481. 
30. Nunez, P., Neocortical Dynamics and Human EEG Rhythms, N.Y., Oxford: Oxford Univ. 
Press, 1995. 
31. Wright, J.J. and Loley, D.T.J., Simulation of Electrocor-tical Waves, Biol. Cybernetics, 
1995, vol. 72, p. 347. 
32. Michael, D. and Honchin, J., Automatic EEG Analysis: 
A Segmentation Procedure Based on the Autocorrelation Function, Electroencephalogr. Clin. 
Neurophysiol., 1979, vol. 46, p. 232. 
33. Genkins, G. and Watts, D., Translated under the title Spektral'nyi analiz i ego prilozhenie, 
Moscow: Mir, 1972, vol. 1. 
34. Skrylev, K.M., A Method of Analysis of Abrupt Changes in EEG Rhythmicity, Fiziol. Chel., 
1984, vol. 10, no. 2, 
p. 333. 
35. Omel'chenko, V.P., Vorontsov, B.I., and Grishin, A.D., A Test for Heterogeneity in EEG 
Spectral Estimations, Fiz-iol. Chel., 1988, vol. 14, no. 1, p. 87. 
36. Brodsky, B.E. and Darkhovsky, B.S., Nonparametric Methods in Change-point Problems, 
Dordrecht (the Netherlands): KluwerAcad. PubL, 1993. 
37. Kaplan, A.Ya., Darkhovsky, B.S., Fingel'kurts, Al.A., et al., Topological Mapping of the 
Synchronization Pro cess of the Moments of Sharp Changes in Human Multi channel EEG, Zh. 
Vyssh. Nervn. Deyat. im. I.P. Pavlova, vol.47.no. 1,p. 32. 
38. Brodsky, B.E., Darkhovsky, B.S., Kaplan, A.Ya., et al., Nonparametric Segmentation of the 
Electrical Brain Sig nals, Avtomatika i Telemekhanika, 1998, no. 2, p. 23. 
39. Shishkin, S.L., Brodsky, B.E., Darkhovsky, B.S., and Kaplan, A.Ya., EEG as a 
Nonstationary Signal: An Approach to the Analysis Based on Nonparametric Sta tistics, Fiziol. 
Chel., 1997, vol. 23, no. 4, p. 124. 
40. Weiss, M.S., Testing Correlated "EEG-Like" Data for Normality Using a Modified 
Kolmogorov-Smirnov Sta tistic, IEEE Transaction on Biomedical Engineering, 1986, vol. 33, 
no. 12, p. 1114. 
41. Kaplan, A.Y, Fingelkurts, Al.A., Fingelkurts, An.A., etal., Topological Mapping of Sharp 
Reorganization Synchrony in Multichannel EEG, Am. J. of Electro-neurodiagnostic Technol. 
(Am. J. END), 1997, vol. 37, p. 265. 
42. Fingel'kurts,   An.A.,   Fingel'kurts,   Al.A.,   and Kaplan, A.Ya., Electroencephalographic 
Analysis of Operational Synchronization of Cortical Formations of the Human Brain during 
Mnestic Activity, Vestn. Mask. Univ. Ser. Biol., 1998, no. 1, p. 3. 

 11



43. Shishkin, S.L., Investigation of Synchronization of the Moments of Sharp Changes in Alpha 
Activity of Human EEG, Cand. Sci. (Biol.) Dissertation, Moscow, 1997. 
44. Kaplan, A.Y, Darkhovsky, B.S., and Roeschke, J., Microstructure of the Sleep Stages: State-
Shift Analysis of the EEG in Humans, Electroencephalogr. Clin. Neu rophysiol., 1997, vol. 103, 
no. 1, p. 178. 
45. Remond, A. and Renault, B., La Theorie des Abjects Electrographiques. Rev., 
Electroencephalogr. Clin. Neu rophysiol., 1972, vol. 3, p. 241. 
46. Schwartz, I. and Gath, I., Syntactic Pattern Recognition Applied to Sleep EEG Staging, 
Pattern Recognition Let ters, 1989, vol. 10, p. 265. 
47. Jansen, B.H. and Cheng, W.-K., Structural EEG Analy sis: An Explorative Study, Int. J. 
Biomed. Comput., 1988, vol. 23, p. 221. 
48. Kaplan, A.Y. and Kadr, I., The Multiple Combinatorial Analysis of Segmental EEG 
Structure, Proc. Int. Symp. Mathematical Approach to Brain Functioning Diagnos tics, Prague, 
1990,p.69. 
49. Lehmann, D., Multichannel Topography of Human Alpha EEG Fields, Electroencephalogr. 
Clin. Neuro physiol., 1971, vol. 31, p. 439. 
50. Lehmann, D., Ozaki, H., and Pal, I., EEG Alpha Map Series: Brain Micro-States by Space-
Oriented Adaptive Segmentation, Electroencephalogr. Clin. Neurophysiol., 1987, vol. 67, p. 
271. 
51. Lehmann, D., Brain Electric Field Mapping and Map Analysis in Psychiatry: The "Atoms of 
Thought", Biol. Psychiatry, 1991, vol. 2, p. 391. 
52. Hofman, W.G. and Spreng, M.P, Unsupervised Classification of EEG from Subdural Seizure 
Recordings, Brain Topography, 1997, vol. 10, no. 2, p. 121. 
 

 12


